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Abstract Immediate-early genes (IEGs) have long been

used to visualize neural activations induced by sensory and

behavioral stimuli. Recent advances in imaging techniques

have made it possible to use endogenous IEG signals to

visualize and discriminate neural ensembles activated by

multiple stimuli, and to map whole-brain-scale neural

activation at single-neuron resolution. In addition, a

collection of IEG-dependent molecular tools has been

developed that can be used to complement the labeling of

endogenous IEG genes and, especially, to manipulate

activated neural ensembles in order to reveal the circuits

and mechanisms underlying different behaviors. Here, we

review these techniques and tools in terms of their utility in

studying functional neural circuits. In addition, we provide

an experimental strategy to measure the signal-to-noise

ratio of IEG-dependent molecular tools, for evaluating their

suitability for investigating relevant circuits and behaviors.
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Introduction

One of the most intriguing problems in neuroscience is to

understand how brains respond to various sensory and

behavioral stimuli [1, 2]. At the cellular level, these stimuli

are represented (i.e. encoded) by specific stimulus-acti-

vated neural ensembles. Visualizing and manipulating

these ensembles in lab animals will allow us to reveal the

neural circuits and underlying neural mechanisms that

drive specific behavioral responses, which will ultimately

be used to understand the neuroscience of human behaviors

and the neuropathology of related disorders.

Immediate-early genes (IEGs) such as c-fos, Arc, and

Zif268/Egr1 are rapidly activated in stimulated neurons

[3–5], and IEG activation has long been used to label and

map stimuli-activated neural ensembles by direct visual-

ization through either immunohistochemistry (IHC) or

in situ hybridization (ISH) [6, 7]. Additional co-staining for

markers of specific neuronal types has further revealed the

cellular identities of activated neural ensembles, and has

provided the foundation for using the molecular tools

described below to trace the circuits activated by stimuli.

In recent years, novel techniques have been developed

to further expand the application of IEGs to the study of the

neural activation patterns induced by various types of

stimuli or behavioral experiences. In this review, we first

focus on novel imaging techniques that use endogenous

IEG signals to either differentiate neural ensembles acti-

vated by multiple stimuli, or to visualize activated neural

networks at the whole-brain scale and single-neuron

resolution. Then we discuss novel tools that use IEG-

based regulatory sequences or molecules modulated by

Ca2?-influx to label and manipulate neurons and their

projections.
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Dual-Epoch Mapping Techniques to Discriminate
Different Functional Circuits

It is often desirable to map the neural representations of

two distinct stimuli, such as emotional stimuli of an

appetitive and an aversive nature [8–13], across the whole

brain at single-cell resolution. This naturally raises the

question of whether the same neural ensemble is activated

by both stimuli. Experimentally, a single ISH or IHC

against an IEG in a dual-stimulated test animal cannot

differentiate the two ensembles. Neither can this be done

by comparing the neural activation patterns between two

test animals, each given one of the stimuli, due to the

inherent variability in the spatial distribution of neurons

between animals.

To solve this problem, several labs have developed IEG-

dependent dual-epoch mapping techniques to identify and

differentiate neural ensembles activated by different stim-

uli in the brain of the same animal. Cellular compartment

analysis of temporal activity by fluorescence in situ

hybridization (CatFISH) was developed to visualize and

distinguish the hippocampal neural ensembles activated by

different environments using experience-induced Arc (ac-

tivity-regulated cytoskeleton-associated) mRNA [14, 15]:

in CatFISH, the test animals are first placed in a novel

environment for 5 min, returned to their home cages for

*20 min, and then placed in a second novel environment

for 5 min before being sacrificed. The 20-min interval

between the two novel environments allows the Arc mRNA

induced by the first novel environment to be completely

transported out of the nucleus to the cytoplasm, while by

the time the test animals are sacrificed, the Arc mRNA

induced by the second environment remains exclusively in

the nucleus. Thus, neural ensembles activated by different

environments can be distinguished by the subcellular

distribution of Arc mRNA. Based on similar principles, a

c-fos-based CatFISH was later developed to label neurons

activated by mating and fighting behaviors in mice [16].

Alternatively, several groups developed a differential-

labeling technique separately using the mRNA and

protein signals of the same IEG. This is based on the

finding that the mRNA signals of IEGs such as c-fos and

zif268/Egr1 rise and peak very rapidly in stimulus-

activated neurons, but their protein signals accumulate

and peak significantly later. Such differences in the

kinetics of mRNA and protein accumulation lead to a

substantial temporal separation between the stimuli-in-

duced mRNA and protein peaks (Fig. 1). So, when two

stimuli separated by an appropriate time interval are

applied to the same animal, at a carefully chosen time

point of inspection, the IEG signals in neurons activated

by the first stimulus will all be in protein form, while

those in neurons activated by the second stimulus will

all be in mRNA form. Thus, the two differently-

activated neural ensembles can be distinguished using

ISH and IHC.

Chaudhuri et al. first developed a technique using

regular IHC and fluorescent ISH (abbreviated as I-FISH) to

detect Zif268 signals to label and differentiate neurons

activated by different sensory stimuli [17, 18]. Inspired by

this technique, Xiu et al. developed tyramide-amplified

IHC–FISH (TAI-FISH) to further investigate neural acti-

vations in the prelimbic system stimulated by either

appetitive or aversive stimuli [19, 20]. In TAI-FISH,

tyramide was used to further amplify IHC signals to

improve the signal-to-noise ratio and more robustly

separate the protein and mRNA signal peaks induced by

two stimuli. Using c-fos-based TAI-FISH, Xiu and col-

leagues found that appetitive and aversive valences are

coded by largely distinct, often spatially separated neural

ensembles in many of the same brain regions, thus

indicating that different emotional valences are coded by

distinct neural circuits.

Imaging Neural Projections Using IEG-Dependent
Signals at the Whole-Brain Scale

In addition to visualizing activated neuronal cell bodies,

mapping of their projections across the whole brain is also

required to enable systemic identification of brain circuits

that are functionally involved in different behaviors, and to

assess whether and how they are functionally connected.

But aside from several hundred micrometers of cortical

layers, the deep brain is impenetrable to the light micro-

scope. Meanwhile, conventional brain sectioning

Fig. 1 Principle of dual-epoch mapping techniques such as I-FISH

and TAI-FISH. These methods use Zif268 or c-fos mRNA and protein

signals to differentially label neural ensembles induced by two

different stimuli. In TAI-FISH, Xiu et al. [19, 20] used tyramide to

improve the signal-to-noise ratio of IHC and achieved better temporal

separation between c-fos mRNA and protein signals than I-FISH.
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techniques lack the necessary resolution for reconstructing

projections that constitute a neural network.

Two different strategies have been developed to solve

this problem. Optical sectioning technologies, which

include BBAB [21], ScaleA2 [22], 3DISCO [23, 24],

ClearT2 [25], SeeDB [26], CLARITY [10, 27, 28], CUBIC

[29], iDISCO [30, 31], and PACT [32], use special

solutions to clear brain tissues by dissolving lipids while

preserving the rest of the structure, most importantly

neurons and projections, thus matching the refractive

indexes between brain regions and reducing light scatter

so that neurons and projections once hidden deep in the

brain can now be imaged [33].

Alternatively, fluorescent Micro-Optical Sectioning

Tomography (fMOST) combines ultrathin mechanical

sectioning, simultaneous imaging, and 3D-image recon-

struction to scan the whole mouse brain to image fluores-

cent protein-labeled neurons and their projections at

micron-scale resolution [34–36]. This was further

improved by chemically reactivating fluorescent protein

signals after sample embedding [37]. Thus, fMOST is

compatible with the IEG-dependent tools that express

fluorescent proteins to label activated neural networks.

So far, CLARITY has been used to map c-fos-driven

tdTomato signals induced by cocaine or foot shock [10].

All of these techniques are compatible with fluorescent

protein visualization, and thus can be used in conjunction

with IEG-dependent labeling tools (see next section). It

will be exciting to see what new neural ensembles and

functional circuits will be revealed with these imaging

technologies.

IEG-Dependent Molecular Tools to Functionally
Label and Manipulate Activated Neural
Ensembles

Complementing endogenous-IEG-based methods, in the

last two decades, a variety of IEG-dependent molecular

tools, either in the form of transgenic animals or virus-

based expression constructs, have been developed to study

neural activation [38].

Some of these tools use IEG promoters to activate the

expression of a reporter to label activated neurons. The

most frequently-used reporter is a fluorescent protein

[39–45], although beta-galactosidase (lacZ) [46] and

luciferase [47, 48] have also been used. In addition to

regular fluorescent proteins, new species like d2EGFP that

has a shorter half-life, or ‘‘fluorescent timers’’ which

change color over time after being translated [49], have

also been used to either reduce the non-specific labeling

caused by leaky expression [44, 50–52], or to differentially

label neurons activated at different time points [53].

Some of these tools express effector genes to manip-

ulate the activated ensembles. For example, cfos-LacZ has

also been used to convert the infused compound Daun02

to daunorubicin to inhibit Ca2?-dependent neuronal

activity. This technique has been used to identify and

manipulate neurons involved in contextual drug condi-

tioning and food-seeking behaviors [46, 54–57], although

it should be noted that the robustness and specificity of the

LacZ-Daun02 technique has yet to be fully quantified and

hence evaluated as illustrated in Fig. 2 and the section

entitled ‘‘Evaluation of the Robustness and Specificity of

IEG-Dependent Tools’’.

Today, opsins such as channel rhodopsin [58, 59],

halorhodopsin [60], and archaerhodopsin [61] are the most

frequently used effectors and have been shown to be able to

bidirectionally manipulate neural ensembles involved in

memory formation [53, 62–65], innate and learned behav-

iors [66, 67], and contextual fear conditioning [64, 65].

DREADD (designer receptor exclusively activated by

designer drug) receptors [68, 69] have also been used to

activate or inhibit stimulated ensembles [70].

To ensure that the reporters and effectors are both

exclusively and robustly expressed in stimuli-activated

neurons and nowhere else, both native IEG promoters such

as c-fos, Arc, and Egr1 [44, 67, 71, 72], and native

enhancers such as the Synaptic Activity-Responsive Ele-

ment (SARE) of the Arc gene (used in conjunction with a

minimal Arc promoter) have been successfully used to

label and manipulate activated neurons and spines [52, 73].

Furthermore, synthetic promoters have been designed to

combine multiple discrete regulatory motifs with minimal

IEG promoters to express the reporter or effector genes

more robustly, or to reduce background neural labeling.

For example, the Robust Activity Marking system fuses the

Activator Protein-1 site and Npas4-Responsive Element

sites to a minimal human FOS promoter to induce[30-fold

induction of labeling after contextual fear conditioning in

the hippocampal CA3 region [74]. Similarly, the enhanced

SARE system clustered multiple subregions of the native

SARE enhancer to a minimal Arc promoter, and it

demonstrated far stronger inducibility in labeling contralat-

eral V1 layer 2/3 neurons in a monocular stimulation

paradigm than a cfos promoter [50].

‘‘Two-Tiered’’ IEG-Dependent Tools and Their
Temporal Control Mechanisms

One major challenge for the IEG-dependent molecular

tools is to minimize the activity of IEG promoters in the

absence of a stimulus, because leaky activity of the IEG-

dependent promoter may cause substantial background

neuron labeling or effector expression. To solve this
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problem, ‘‘two-tiered’’ IEG-dependent tools have been

developed in recent years.

In these tools, an IEG promoter drives the expression of

a primary effector gene (the first tier) when being

stimulated by the intended stimulus (foot shocks, for

example). The primary effector itself does not label or

manipulate activated neurons. Instead, it activates the

expression of a secondary reporter or effector gene (the

second tier) for the actual labeling or manipulation.

The key feature of a two-tiered IEG-dependent tool is

that an additional layer of temporal control is incorporated

to minimize the activity of the primary effector gene in the

absence of the intended stimulus, hence the expression of

the second-tier reporter or effector in neurons is also

minimized. Only when the intended stimulus is to be given

is the temporal control mechanism removed to allow the

expression of the second-tier genes.

The TetTag mouse is one such tool that has been

extensively used to tag and manipulate neurons involved in

memory formation in the hippocampus, basolateral amyg-

dala, and medial prefrontal cortex [62–65, 70, 75–77]. The

TetTag transgenic mouse line uses the Tet-Off system to

turn off the expression of a reporter or effector in the

absence of the intended stimulus [76, 78] (Fig. 3A). In the

TetTag mouse, the primary effector is tetracycline trans-

activator (tTA), an artificial transcription activator.

Accordingly, the ‘‘second tier’’ gene has a synthetic

promoter which contains tetracycline response elements

(TREs) and requires tTA to bind the TREs for expression.

Prior to stimulation, TetTag mice are fed a diet

containing doxycycline (Dox), which binds to the cellular

tTA and prevents it from binding TREs, thus preventing the

reporter or effector gene from being expressed. Several

days before stimulation, the TetTag mouse is switched to a

diet without Dox for clearance. This provides a time

window for stimulation, and for stimulus-induced tTA to

bind TREs and activate the expression of the secondary

reporter or effector. After stimulation, the TetTag mouse is

switched back to a Dox-containing diet again to minimize

tTA activity. In doing so the expression of the second tier

reporter and effector gene is strictly limited to the period

when the intended stimulus is given.

Another two-tiered system uses creER as the primary

effector gene (Fig. 3B). creER is a derivative of cre

recombinase, fused with a mutated ligand-binding domain

for the human estrogen receptor (ER) [79–81]. The ER

domain prevents creER from entering the nucleus without

tamoxifen, an ER antagonist. The secondary reporter or

effector gene is either constructed as a double-floxed

inverse open reading frame (DIO or FLEX) [82], thus is in

the opposite direction to its own promoter, or is prevented

from being translated by a loxp-stop-loxp sequence which

is placed between the effectors and their promoters

[83, 84]. Therefore, in the absence of tamoxifen, cellular

Fig. 2 Experimental procedure to quantify the robustness and

specificity of IEG-dependent tools. A Two identical stimuli are

applied several days apart (based on the literature [66, 85, 88] and our

own tests, the exact time interval between the two stimuli may depend

on the tools, brain regions, and behavioral paradigms used) to induce

signals in the IEG-dependent tool and endogenous IEG, respectively.

B Signals of an IEG-dependent tool are divided into two parts: false

positives (neurons only labeled by the IEG-dependent tool, a); and

true positives (neurons labeled by both the IEG-dependent tool and

endogenous IEG staining, b). The third category, false negative

signals (c) are neurons only labeled by endogenous IEG staining. We

quantify the robustness of an IEG-dependent tool as b/(b?c), and its

specificity by b/(a?b). Examples of low robustness (C) and low

specificity (D) are shown. A given IEG-dependent tool needs to have

both high robustness and specificity to have a high signal-to-noise

ratio.
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creER is kept in the cytoplasm and prevented from entering

the nucleus, and is unable to reorganize the expression

construct of the secondary reporter or effector to allow its

expression.

For stimulation, typically, animals are injected a few

hours ahead with tamoxifen, which binds to the ER domain

and allows stimulus-induced creER to enter the nucleus,

where it either ‘‘flips’’ the secondary reporter or effector

gene to allow transcription [67, 85, 86], or removes the

intervening loxp-stop-loxp sequence to allow translation

[87]. Using this strategy, Arc-CreER and TRAP transgenic

mice have been generated to investigate neural ensembles

activated by innate or learned responses, complex experi-

ences, and an appetitive or aversive emotional stimulus

[10, 67, 85, 87].

A more recent ‘‘two-tiered’’ system is called CANE

(capturing activated neuronal ensembles) [88] (Fig. 3C). In

the CANE system, the primary effector gene is a destabi-

lized version of TVA (dsTVA), an avian membrane

receptor, which is inserted to the cell membrane of

activated neurons. The secondary reporter or effector is

delivered by pseudo-viral vehicles coated with EnvA, a

ligand of TVA. This ensures precise targeting of the

secondary reporter or effector to the stimulated, TVA-

expressing neurons for expression.

Because of its short half-life, the level of dsTVA prior to

stimulation is very low. Indeed, the secondary reporter or

effector must be delivered to activated neurons within one

to two hours after stimulation. This relatively narrow time

window for targeting provides much tighter temporal

control over expressing the reporter or effector genes in

activated neurons than other systems, and thus more

effectively minimizes non-specific expression.

IEG-Based Methods to Analyze the Molecular
Features of Neural Ensembles

IEG-dependent molecular tools are also suitable for reveal-

ing the gene expression profiles of neural ensembles

activated by behavior or experience. By tagging ribosomes

or mRNA of activated neurons and then using immuno-

precipitation (IP) to isolate translating mRNA for analysis,

two groups have identified the molecular signatures of

emotion-related ensembles in the medial prefrontal cortex

[10] and basolateral amygdala [13]. In addition to using

IEG-dependent molecular tools, it is now technically

feasible to isolate activated neural ensembles for transcrip-

tome profiling using IEG markers [89–91] or phosphory-

lated ribosomes [92]. By analyzing the transcriptional

landscapes of activated neural ensembles, we may discover

new sets of genes whose expression is significantly and

rapidly altered by a given stimulus.

Evaluation of the Robustness and Specificity
of IEG-Dependent Tools

IEG-dependent molecular tools have been developed to

simplify the identification of stimuli-activated neural ensem-

bles, and arguably more importantly, to install effectors such

as opsin in such ensembles for future manipulation.

Therefore, they need to capture neurons that are genuinely

activated by the stimulus. As such, endogenous IEG

activation patterns are the gold standards to evaluate a

given IEG-dependent tool, which ideally should label an

identical or a very similar activated neural ensemble as the

endogenous IEG in response to the same stimulus.

We and others have used the experimental procedures

illustrated in Fig. 2A to quantify the signal-to-noise ratio of

IEG-dependent tools [66, 85, 88]. Specifically, we use two

parameters to evaluate an IEG-dependent tool: first,

Fig. 3 Three ‘‘two-tiered’’ IEG-dependent tools (A: Tet-OFF; B:
creER; C: CANE) and their respective mechanisms for temporal

control. ChR2-EYFP is the reporter-effector for all three tools

[64, 67, 88]. In CANE (C), AAV-DIO-ChR2-EYFP is co-injected

with CANE-LV-cre.
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robustness/penetrance, which we define as the percentage

of neurons labeled by endogenous IEG signals that are also

labeled by the IEG-dependent reporter (b/b?c in Fig. 2B);

and second, specificity/faithfulness, defined by the per-

centage of neurons labeled by the IEG-dependent reporter

that are also labeled by endogenous IEG signals (b/a?b in

Fig. 2B). A low degree of robustness causes insufficient

labeling or installation of effectors into activated neurons

(false negatives, Fig. 2C). Low specificity leads to the

labeling and manipulation of neurons that are not activated

by stimulation (false positives, Fig. 2D). Both cause less

desirable signal-to-noise ratios, and thus should be avoided.

Some factors are known to affect the signal-to-noise

ratio of specific IEG-dependent tools. For example, IEG-

tTA and IEG-creER are significantly influenced by the

metabolic rate of Dox and tamoxifen, respectively: Dox

clearance takes days to weeks to be effective so residual

Dox no longer blocks tTA from inducing the robust

transcription of the secondary reporter or effector [76, 97];

similarly, tamoxifen takes several hours to induce sufficient

creER entry into the nucleus [85]. If a stimulus is given too

early, i.e. before Dox or tamoxifen reaches its optimal

concentration, it could cause insufficient expression of the

reporter or effector; alternatively, if a stimulus is given too

late, the basal level of tTA or creER may cause substantial

expression of reporter or effector genes in neurons

activated by unintended stimuli. Therefore, researchers

using these tools need to carefully optimize the time

windows of Dox clearance or tamoxifen induction to

ensure the optimal signal-to-noise ratio.

Furthermore, based on previous publications and our

own tests [66, 85, 88], the signal-to-noise ratio of IEG-

dependent tools can vary significantly between different

brain regions or behavioral paradigms (unpublished data):

they may be robustly activated by stimuli in some brain

regions and have neural activation patterns similar to

endogenous IEGs, but have poor signal-to-noise ratios in

other brain regions and/or behavioral paradigms. There-

fore, researchers should thoroughly test their IEG-depen-

dent tools of choice to determine whether they have

satisfactory signal-to-noise ratios for the brain regions and/

or behaviors of interest (Fig. 2).

Limitations of IEG-Dependent Tools

No tools are perfect. IEG-based molecular tools do have

limitations: first, there is likely a threshold of electrophys-

iological activity that must be passed before a neuron

expresses IEG (e.g. bursting activity), so IEG mapping

only reveals a subset of those neurons that actively

contribute to a behavior; second, some brain areas can

show strong electrophysiological activation without

expressing IEGs, e.g. the substantia nigra does not express

c-fos despite robust activity [98–100]; and third, the basal

levels of IEG genes can be high in some brain areas (e.g.

sensory and motor cortices) [19, 20, 101, 102], thus

preventing specific labeling. In these regards, other meth-

ods such as functional magnetic resonance imaging [103]

and single-unit recording [11, 104, 105] can provide

complementary information.

Non-IEG-Based Activity-Dependent Tools

Last year, a new class of activity-dependent tools was

introduced: the Ca2?-and-light-gated tools, which include

Cal-Light [93] and FLARE [94]. Unlike the tools described

above, these do not use IEG sequences. Instead, they are

designed to label and install effectors in activated neurons

in response to the rise of cytoplasmic Ca2? after neuronal

activation. In addition, photostimulation is incorporated to

provide temporal and spatial control to minimize non-

specific expression of the reporter or effector gene.

Cal-Light and FLARE both express two multi-domain

fusion proteins. One fusion protein contains five domains:

the transcription factor tTA, which drives the expression of

reporter and effector genes in the activated neurons; a

transmembrane domain, which tethers tTA to the cell

surface; a light-oxygen-voltage (LOV) [95] sensing domain

for light gating; a Ca2?-gating domain (calmodulin (CaM)

or CaM-binding peptide); and the tobacco etch virus

protease (TEVp) cleavage sequence (TEVseq) to release

tethered tTA[96].

The other fusion protein contains two main domains:

another Ca2?-gating domain that mediates the interaction

between the two fusion proteins in the presence of high

cytoplasmic Ca2?; and TEVp, which cleaves the TEVseq

to release tTA. A third construct in these tools carries the

reporter and effector genes controlled by a TRE sequence

recognized by tTA.

In stimulated neurons, an influx of Ca2? triggers a

robust interaction between the two Ca2?-gating domains,

which brings TEVp into close proximity with

TEVseq. However, the LOV domain blocks TEVseq from

being accessed by TEVp, so an undesired rise of Ca2?

alone is insufficient to induce TEVp cleavage and tTA

release. After minutes of blue-light exposure, LOV under-

goes conformational changes and exposes TEVseq to

TEVp for TEVp cleavage, tTA release, and the expression

of reporter and effector genes in the activated neurons.

Like the two-tiered IEG-dependent tools described

earlier, the Cal-Light and FLARE tools are capable of

converting transient neural activation patterns into

stable neural labeling and effector installation via tran-

scriptional activation, which offers significant versatility in
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choosing reporters and effectors. Most importantly, they

provide tighter spatiotemporal control, especially due to

the much narrower time window and smaller area of light

exposure than in previous IEG-dependent tools. On the

other hand, since Cal-Light and FLARE require the co-

transfection of three viral constructs into the same neuron,

and the ratio between the two fusion proteins affects the

level of tTA release [93], additional tests may be required

to determine the appropriate dosage of each construct for

an application. Nevertheless, it will be exciting to see the

further optimization and application of these new tools.
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